Gamma rays from sources other than radioactive decay
A few gamma rays in astronomy are known to arise from gamma decay (see discussion of SN1987A) but most do not.
Photons from astrophysical sources that carry energy in the gamma
radiation range are often explicitly called gamma-radiation. In addition
to nuclear emissions, they are often produced by sub-atomic particle
and particle-photon interactions. Those include electron-positron annihilation, neutral pion decay, bremsstrahlung, inverse Compton scattering, and synchrotron radiation.
- Terrestrial thunderstorms: Thunderstorms can produce a brief pulse of gamma radiation called a terrestrial gamma-ray flash. These gamma rays are thought to be produced by high intensity static electric fields accelerating electrons, which then produce gamma rays by bremsstrahlung as they collide with and are slowed by atoms in the atmosphere. Gamma rays up to 100 MeV can be emitted by terrestrial thunderstorms, and were discovered by space-borne observatories. This raises the possibility of health risks to passengers and crew on aircraft flying in or near thunderclouds.[17]
Extraterrestrial, high energy gamma rays include the gamma ray background produced when cosmic rays
(either high speed electrons or protons) collide with ordinary matter,
producing pair-production gamma rays at 511 keV. Alternatively, bremsstrahlung
are produced at energies of tens of MeV or more when cosmic ray
electrons interact with nuclei of sufficiently high atomic number (see
gamma ray image of the Moon at the beginning of this article, for
illustration).
The red dots show some of the ~500 terrestrial gamma-ray flashes daily
detected by the Fermi Gamma-ray Space Telescope through 2010. Credit:
NASA/Goddard Space Flight Center.
- Pulsars and magnetars: The gamma ray sky (see illustration at right) is dominated by the more common and longer-term production of gamma rays that emanate from pulsars within the Milky Way. Sources from the rest of the sky are mostly quasars. Pulsars are thought to be neutron stars with magnetic fields that produce focused beams of radiation, and are far less energetic, more common, and much nearer sources (typically seen only in our own galaxy) than are quasars or the rarer gamma-ray burst sources of gamma rays. Pulsars have relatively long-lived magnetic fields that produce focused beams of relativistic speed charged particles, which emit gamma rays (bremsstrahlung) when those strike gas or dust in their nearby medium, and are decelerated. This is a similar mechanism to the production of high energy photons in megavoltage radiation therapy machines (see bremsstrahlung). The "inverse Compton effect", in which charged particles (usually electrons) impart energy to low-energy photons boosting them to higher energy photons. Such impacts of photons on relativistic charged particle beams is another possible mechanism of gamma ray production. Neutron stars with a very high magnetic field (magnetars), thought to produce astronomical soft gamma repeaters, are another relatively long-lived star-powered source of gamma radiation.
- Image of entire sky in 100 MeV or greater gamma rays as seen by the EGRET instrument aboard the CGRO spacecraft. Bright spots within the galactic plane are pulsars while those above and below the plane are thought to be quasars.
- Quasars and active galaxies: More powerful gamma rays from very distant quasars and closer active galaxies are thought to have a gamma ray production source similar to a particle accelerator. High energy electrons produced by the quasar, and subjected to inverse Compton scattering, synchrotron radiation, or bremsstrahlung, are the likely source of the gamma rays from those objects. It is thought that as a supermassive black hole at the center of such galaxies provide the power source that intermittently destroys stars and focuses the resulting charged particles into beams that emerge from their rotational poles. When those beams interact with gas, dust, and lower energy photons they produce X-rays and gamma rays. These sources are known to fluctuate with durations of a few weeks, suggesting their relatively small size (less than a few light-weeks across). Such sources of gamma and X-rays are the most commonly visible high intensity sources outside our galaxy. They shine not in bursts (see illustration), but relatively continuously when viewed with gamma ray telescopes. The power of a typical quasar is about 1040 watts, a small fraction of which is gamma radiation. Much of the rest is emitted as electromagnetic waves of all frequencies, including radio waves.
- Gamma-ray bursts: The most intense sources of gamma rays, are also the most intense sources of any type of electromagnetic radiation presently known. They are the "long duration burst" sources of gamma rays in astronomy ("long" in this context, meaning a few tens of seconds), and they are rare compared with the sources discussed above. By contrast, "short" gamma-ray bursts, which are not associated with supernovae, are thought to produce gamma rays during the collision of pairs of neutron stars, or a neutron star and a black hole. Such bursts last two seconds or less, and are of far lower energy than the "long" bursts (only sources in our galaxy are detectable for that reason).[18]
- A hypernova. Artist's illustration showing the life of a massive star as nuclear fusion converts lighter elements into heavier ones. When fusion no longer generates enough pressure to counteract gravity, the star rapidly collapses to form a black hole. Theoretically, energy may be released during the collapse along the axis of rotation to form a long duration gamma-ray burst.
The so-called long-duration gamma-ray bursts produce a total energy output of about 1044 joules (as much energy as our Sun
will produce in its entire life-time) but in a period of only 20 to 40
seconds. Gamma rays are approximately 50% of the total energy output.
The leading hypotheses for the mechanism of production of these
highest-known intensity beams of radiation, are inverse Compton scattering and synchrotron radiation
from high-energy charged particles. These processes occur as
relativistic charged particles leave the region of the event horizon of a
newly formed black hole
created during supernova explosion. The beam of particles moving at
relativistic speeds are focused for a few tens of seconds by the
magnetic field of the exploding hypernova.
The fusion explosion of the hypernova drives the energetics of the
process. If the narrowly directed beam happens to be pointed toward the
Earth, it shines at gamma ray frequencies with such intensity, that it
can be detected even at distances of up to 10 billion light years, which
is close to the edge of the visible universe.
Tidak ada komentar:
Posting Komentar